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• Primitive roots of unity (one) 
– Roots of unity on the real number line ℝ
– Roots of unity in the complex number field ℂ
– Discrete Fourier transform

• Quantum Fourier transform 
– Circuit representation of the QFT
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Agenda



• In conventional algebra, the equation  𝑥! − 1 = 0 or 𝑥! = 1 has one solution, 𝑥 = 1 when 𝑛 is odd, and 
two solutions, 𝑥 = ±1, when it is even. This is when 𝑥 is restricted to be real (𝑥 ∈ ℝ!).

• When dealing with complex numbers (𝑧 ∈ ℂ!), a similar expression for a complex number 𝑧,
𝑧! = 1 Eqn. (14.1)  has many roots.

• Using complex polar notation for 𝑧, we can write: 𝑧 = 𝑟𝑒"# ⟹ 𝑧! = 𝑟!𝑒"!# = 1 Eqn. (14.2).

• Eqn. (14.2) is equivalent to 𝑟!𝑒"!# = 1𝑒"$%& for 𝑘 = 0, 1, 2, …𝑛 − 1.  This only makes sense if 𝑟! = 1
and  𝜗 = ⁄2𝜋𝑘 𝑛 (the  complex number 𝑗 = −1 ).

• The roots of 𝑧! = 1 can therefore be listed as 𝑒 ⁄"$%( !, 𝑒" ⁄$%) !, 𝑒" ⁄$%$ !, … 𝑒" ⁄$%(!+)) !.

• First root of unity (𝑛 = 1, 𝑘 = 0) is 1; second  roots of unit (𝑛 = 2, 𝑘 = 0, 𝑘 = 1) are 1 and −1; third 
roots of unity (𝑛 = 3, 𝑘 = 0, 𝑘 = 1, 𝑘 = 2) are 1, 𝑒" ⁄$% -, 𝑒" ⁄.% -; and the fourth roots of unity are 
1, 𝑗, −1, −𝑗; 𝑒𝑡𝑐. ;
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Primitive Roots of Unity 
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• As we will define later, the 𝑁𝑡ℎ root of unity 
can be written as 𝜔 = 𝑒 ⁄"#$ % where there are 
𝑁 roots;  we will prefer to write  𝑁 = 2&.

• For  𝑁 = 8, the first root of unity makes the 
phase angle of 𝜑 = ⁄2𝜋 8 with the real axis. 
The other 7 roots of unity are  illustrated on 
the  circle of unit radius on the right.

• The 8 complex roots illustrated in the graphic 
are the 8th roots of  unity.

Graphical Representation of the Roots of Unity



• As already stated in the previous slide, the roots  of  unity can be written as powers of 𝜔 = 𝑒" ⁄$% /.

• We now use the result above to define the Fourier transform, commonly used in signal processing in 
electrical and computer engineering, physics, computer science, and other disciplines.

• In signal processing, the Fourier transform is a tool that tells us what frequencies are contained in a time-
dependent signal and how much of each frequency. 

• The Discrete Fourier Transform (DFT) takes a series of 𝑁 complex numbers, 𝑥(, 𝑥), … 𝑥/+) and 
transforms them into another series of 𝑁 complex numbers 𝑦(, 𝑦), … 𝑦/+).

• If these are written as vectors, we have that 

𝑦(
𝑦)
⋮

𝑦/+)

= 𝐷𝐹𝑇

𝑥(
𝑥$
⋮

𝑥/_)

, which implies the DFT is a matrix.
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Roots of Unity and the Discrete Fourier Transform



• In a discrete setting, the discrete Fourier transform (DFT) is an invertible matrix 𝐷 of dimension 𝑁×𝑁,
given by 

𝐷&1 =
)
/
𝜔&1 Eqn. (14.3), where 𝜔 = 𝑒" ⁄$% / .

• With the definition of a DFT in the previous slide and Eqn. (14.3), we can write the discrete Fourier 
transform for a complex number 𝑥! as 𝑦&

𝑦& ⟶
1
𝑁
Q
!2(

/+)

𝑒
$%"
/ &!𝑥! Eqn. 14.4 .

• The inverse discrete Fourier transform  (DFT3) is then given by

𝑥! ⟶
1
𝑁
Q
&2(

/+)

𝑒
+$%"
/ &!𝑦& Eqn. 14.5 .

• Since the Fourier basis states are orthogonal, the DFT  expressions in (14.4) and (14.5) are inverses of each 
other.  For convenience, from now on we will set 𝑁 = 2!.
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Discrete Fourier Transform



• We define the quantum Fourier transform (QFT) in an analogous way to the the regular DFT such that for 
an orthonormal basis ⟩|𝑥 ∈ ⟩|0 , ⟩|1 , … ⟩|𝑁 − 1 the quantum Fourier transform is given by

⟩|𝑥 ⟶
1
𝑁
Q
&2(

/+)

𝜔4.& ⟩|𝑘 Eqn. (14. 6)

• The inverse quantum Fourier transform is then given by

⟩|𝑘 ⟶
1
𝑁
Q
42(

/+)

𝜔+4.& ⟩|𝑥 Eqn. (14.7)

• The integer 𝑘 in binary notation is 

𝑘 =Q
ℓ2(

!

𝑘ℓ2!+ℓ

• For Fourier basis states ⟩|𝑖 , we can write ⟩|𝑖 using 𝑘 as expanded above, 

⟩|𝑖 =
1
𝑁
Q
&2(

/+)

exp 𝑗2𝜋𝑖Q
ℓ2(

!

𝑘ℓ2+ℓ ⟩|𝑘 Eqn. (14.8)
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Quantum Fourier Transform



• Expression (14.8) can be expanded by writing the sum in the exponential as (tensor) products, thus 

⟩|𝑖 = )
/
∑&!,&",…&# exp 𝑗2𝜋𝑖𝑘)2

+) exp 𝑗2𝜋𝑖𝑘$2+$ … exp 𝑗2𝜋𝑖𝑘!2+! ⟩|𝑘)…𝑘! Eqn. (14.9)

• Since  each summation term 𝑘! is 0,1 , the expression  in (14.9) becomes 

⟩|𝑖 = )
/

⟩|0 + exp 𝑗2𝜋𝑖 2+) ⟩|1 ⟩|0 + exp 𝑗2𝜋𝑖 2+$ ⟩|1 … ⟩|0 + exp 𝑗2𝜋𝑖 2+! ⟩|1 Eqn. (14.10).

• The binary fraction 9
$$

can be represented as 9
$$

= 0. 𝑖!+:;)… 𝑖!, which is a decimal expansion of 𝑖 up to 
𝑚 bits.

• The state in Eqn. (14.10) can therefore be rewritten as
⟩|𝑖 = !

"
⟩|0 + exp 𝑗2𝜋0. 𝑖# ⟩|1 ⟩|0 + exp 𝑗2𝜋0. 𝑖#$!𝑖# ⟩|1 … ⟩|0 + exp 𝑗2𝜋0. 𝑖!… 𝑖# ⟩|1 Eqn. (14.11)
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Expansion of Quantum Fourier Transform Expression 



• Another way to write Eqn. (14.10) using tensor notation is 
⟩|𝑖 = !

"
⟩|0 + exp 𝑗2𝜋0. 𝑖# ⟩|1 ⊗ ⟩|0 + exp 𝑗2𝜋0. 𝑖#$!𝑖# ⟩|1 ⊗⋯⊗ ⟩|0 + exp 𝑗2𝜋0. 𝑖!… 𝑖# ⟩|1 Eqn. (14.11)

• Notice that the last qubit (in red) depends on all the input qubits.  The other qubits toward the left depend 
less on the input qubits.

• When a Hadamard is applied to the first of the input qubits ⟩|𝑖)𝑖$𝑖-… 𝑖! , we get  

⟩|𝑖 ⟶
1
2

⟩|0 + 𝑒$%"(.9! ⟩|𝑖$𝑖-… 𝑖!

• We  learned earlier that a rotation gate is:  𝑅& =
1 0
0 𝑒 ⁄$%" $% ;  applying controlled  rotation gates 

𝑅$, 𝑅-, etc., to the appropriate qubits eventually get all terms of the input qubit into the phase term. We 
explain the action of the controlled rotation later, but in the meanwhile, this is what we want in the state.  

⟩|𝑖 ⟶
1
2

⟩|0 + 𝑒$%"(.9!9"9&…9# ⟩|𝑖$𝑖-… 𝑖! .
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Another Perspective of the Quantum Fourier Transform



• We have the rotation operator  given as

𝑅& =
1 0
0 𝑒 ⁄$%" $% .

• When this operator acts in a controlled fashion on a two-qubit state | ⟩𝑥&𝑥ℓ , where the first qubit is the 
control and the second is the target, we get

𝑅& ⟩|0𝑥ℓ = ⟩|0𝑥ℓ

𝑅& ⟩|1𝑥ℓ = exp $%"
$%
𝑥& ⟩|1𝑥ℓ .

• The controlled rotation operator is  used for importing the input to the exponential as we show next.

• The controlled rotation operator,  together with the Hadamard operator can be used to synthesize a circuit 
for the quantum Fourier transform.
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Action of the Controlled Rotation Operator



• Continuing  the process of importing the qubits into the phase by applying a Hadamard  and controlled 
rotations eventually get us to 

⟩|𝑖 =
1
2!

⟩|0 + 𝑒$%"(.9!9"…9# ⟩|1 ⊗ ⟩|0 + 𝑒$%"(.9!9"…9#'! ⟩|1 ⊗⋯⊗ ⟩|0 + 𝑒$%"(.9# ⟩|1

• This is the desired full QFT.  

• Depending on the order in which the qubits were entered, or which order the Hadamard operator acts on 
the qubits, it maybe necessary to  perform a swap operation at the end of the QFT process.

• A typical circuit implementation of the QFT is shown on the next slide.
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Another Perspective of the Quantum Fourier Transform
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Gate implementation of the QFT 



• The quantum Fourier transform (QFT)  takes a state vector, ⟩|𝜓 , given by 

⟩|𝜓 = 𝛼( ⟩|0 + 𝛼) ⟩|1 + ⋯+ 𝛼/+) ⟩|𝑁 − 1 Eqn. (14.12), 

and transforms it into another state vector, ⟩|Ψ , given by 

| ⟩Ψ = 𝛽( ⟩|0 + 𝛽) ⟩|1 + ⋯+ 𝛽/+) ⟩|𝑁 − 1 Eqn. (14.13).
• The importance of the QFT comes from its ability to perform a transformation on superposition of states.  

For  example, we can perform a QFT on the state 

⟩|𝜑 = )
.

⟩|00 + ⟩|01 − ⟩|10 − ⟩|11 Eqn. (14.14) or even on the state, ⟩|𝜒

⟩|𝜒 = )
-

⟩|1 + ⟩|3 − ⟩|7 = )
-

⟩|001 + ⟩|011 − ⟩|111 Eqn. (14.15).

• In Eqn. (14.15), most of the basis states have amplitudes that are zero.
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What  Does a Quantum Fourier Transform Do?



• For a state vector given as a linear superposition

| ⟩𝜑 = ∑&2($#+)𝛼& ⟩|𝑘 Eqn. (14.16)
• One defines the QFT as 

⟩|Φ = 𝑄𝐹𝑇 ⟩|𝜑 = Q
&2(

$#+)

Q
ℓ2(

$#+)
𝛼&𝑒 ⁄$%"&ℓ $#

2!
⟩|ℓ

• As before, one can identifies the matrix 𝜔&1 = 𝑁&ℓ = 𝑒 ⁄$%"&ℓ $# so that the Fourier transform can be 
rewritten  as  

⟩|Φ = 𝑄𝐹𝑇 ⟩|𝜑 =
1
2!

Q
&2(

$#+)

Q
ℓ2(

$#+)

𝛼&𝑁&ℓ ⟩|ℓ Eqn. (14.17)

• One can evaluate the matrix elements for a few values of 𝑘 and ℓ.
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Action of Quantum Fourier Transform on State Vector



• From the definition of what the quantum Fourier Transform (QFT) does to a vector of complex numbers,  
we can write

𝛼(
𝛼)
⋮

𝛼/+)

= 𝑄𝐹𝑇

𝛽(
𝛽)
⋮

𝛽/+)

Eqn. (14.18)

• Eqn. (14.18) clearly demands that the discrete Quantum Fourier Transform be an 𝑁×𝑁 matrix  that can be 
written as suggested in Eqn. (14.17) as 𝜔&1 = 𝑁&1 = 𝑒 ⁄$%"&1 /.  The QFT operator is therefore

𝑄𝐹𝑇/ =
1
𝑁

1 1 1 1 … 1
1 𝜔 𝜔$ 𝜔- … 𝜔/+)
1 𝜔$ 𝜔. 𝜔< … 𝜔$/+$
1 𝜔- 𝜔< 𝜔= … 𝜔-/+-
⋮ ⋮ ⋮ ⋮ … ⋮
1 𝜔/+) 𝜔$/+$ 𝜔-/+- … 𝜔(/+))(/+))

Eqn. (14.19)
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Matrix Representation of the Quantum Fourier Transform



• The  matrix elements  𝜔&1 = 𝑁&ℓ = 𝑒 ⁄$%"&ℓ $#of the QFT for a few values of 𝑘 and ℓ are 

𝑁&ℓ =
)
$#

𝑒 ⁄$%"(.( $# = 𝑒( = 1 𝑒 ⁄$%"(.) $# = 𝑒( = 1 …
𝑒 ⁄$%").( $# = 𝑒( = 1 𝑒 ⁄$%").) $# = 𝜔 …

⋮ ⋮ ⋱
Eqn. (14.20)

• For one qubit, we have 𝑛 = 1, and the  matrix  becomes 𝑁 = )
$
1 1
1 𝑒"% = )

$
1 1
1 −1 Eqn. (14.21)

• Evidently the matrix for the QFT for a single qubit is identical to the Hadamard operator, 𝐻.

16

Matrix Elements of the QFT



• Determine the QFT of the qubit

| ⟩𝜓 = )
.

⟩|0 + -
.

⟩|1 =
⁄1 4
⁄3 4

.

• The matrix representation of the QFT for a single qubit is  

𝑁 = )
$
1 1
1 𝑒"% = )

$
1 1
1 −1 .

• The  QFT: ⟩|𝜓 = )
$
1 1
1 −1

⁄1 4
⁄3 4

=
⁄1 + 3 2 2
⁄1 − 3 2 2

.

• The transformed qubit can therefore be rewritten as 

⟩|Ψ = )
$ $

1 + 3 ⟩|0 + 1 − 3 ⟩|1 .
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Determining a QFT of a Single Qubit



• Given the two-qubit state  ⟩|𝜑 = )
$

⟩|00 + ⟩|01 with 𝑛 = 2, the matrix representation of the QFT 
operator becomes

𝑁&ℓ = 𝜔&ℓ = 𝑒 ⁄$%"&ℓ $#= 𝑒 ⁄$%"&ℓ .

and the resulting 4×4 matrix is

𝑁&ℓ =
1
2

1 1 1 1
1 𝑒 ⁄%" . 𝑒 ⁄%"$ . 𝑒 ⁄%"- .

1 𝑒 ⁄%"$ . 𝑒 ⁄%". . 𝑒 ⁄%"< .

1 𝑒 ⁄%"- . 𝑒 ⁄%"< . 𝑒 ⁄%"= .

=
1
2

1 1 1 1
1 𝑗 −1 −𝑗
1 −1 1 −1
1 −𝑗 −1 𝑗

• Since ⟩|𝜑 can be written as the bra ⟨𝜑| = ⁄1 2 1 0 1 0 the QFT is  calculated from

𝑄𝐹𝑇: ⟩|𝜑 = )
$

1 1 1 1
1 𝑒 ⁄%" . 𝑒 ⁄%"$ . 𝑒 ⁄%"- .

1 𝑒 ⁄%"$ . 𝑒 ⁄%". . 𝑒 ⁄%"< .

1 𝑒 ⁄%"- . 𝑒 ⁄%"< . 𝑒 ⁄%"= .

⁄1 2
0
⁄1 2
0

= )
$ $

2
1 − 𝑗
0

1 + 𝑗
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Two Qubit Quantum Fourier Transform



• Eqn. (15.17) provided a way to generate the matrix elements of the quantum Fourier transform.  If we 
continue the calculation indicated in that equation, we arrive at the general matrix of the form below,  
where we have reverted to using the notation for the primitive roots of unity, 𝜔&ℓ.

𝑄𝐹𝑇/ =
)
/

1 1 1 1 … 1
1 𝜔) 𝜔$ 𝜔- … 𝜔/+)
1 𝜔$ 𝜔. 𝜔< … 𝜔$/+$
1 𝜔- 𝜔< 𝜔= … 𝜔-/+-
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔/+) 𝜔$/+$ 𝜔-/+- … 𝜔 /+) /+)

Eqn. (14.22).

• Another way of writing the 𝑘ℓ − 𝑡ℎ entry the 𝑄𝐹𝑇/ matrix is simply 𝜔&ℓ.

19

Generalized Matrix for the Quantum Fourier Transform



• First Property: the QFT is  unitary – an operator is unitary if its columns are orthonormal; to prove this, 
we simply  take and multiply any two columns of the  QFT matrix.  We take the 𝐶& and 𝐶ℓ columns, then 

𝐶& 𝐶ℓ =
1
𝑁Q
!2(

/+)

𝜔!& 𝜔!ℓ
3
=
1
𝑁Q
!2(

/+)

𝜔&+ℓ
!
= 1 for 𝑘 = ℓ

• When  𝑘 ≠ ℓ, the expression  above is a geometric series.

• And  𝐶& 𝐶ℓ = )
/
∑!2(/+) 𝜔&+ℓ ! = )

/
>((%'ℓ)+)
>%'ℓ+)

= 0 because 𝜔/(&+ℓ) = 1 due to the fact that 𝜔 is the 𝑁th  
root of  unity.
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Properties of the Quantum Fourier Transform



• Second Property:  Linear  Shift - if  the function ⟩|𝑓(𝑡) has a Fourier transform ⟩|𝐹(𝑡) then ⟩|𝑓(𝑡 + 𝜏)
has a Fourier  transform  ⟩|𝐹(𝑡) 𝑒 ⁄$%?@ /.

• Linear shift is an  important  property for quantum measurements. We consider this in the following. 
Given the state vectors 

⟩|𝑘 =

1
0
0
0

and ⟩|ℓ =

0
1
0
0

we calculate their QFT  by using   the QFT matrix  below

𝑄𝐹𝑇% =
1
2

1 1 1 1
1 𝑗 −1 −𝑗
1 −1 1 −1
1 −𝑗 −1 𝑗

• The results are > ?@𝐾 = 𝑄𝐹𝑇% ⟩|𝑘 = !
&

1
1
1
1

and > ?Bℒ = 𝑄𝐹𝑇% ⟩|ℓ = !
&

1
𝑗
−1
−𝑗

.  
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Properties of the Quantum Fourier Transform



• The result of determining the  QFT for the state  vector  ⟩|𝑘 and ⟩|ℓ indicate that except for a relative   
phase  difference, the  magnitudes of the  state vectors are exactly the same  when a measurement 
operation is  performed.  Recall that we learned a  phase  in  quantum  mechanics  has  no physical 
significance.

• This means the QFT is an important operator for distinguishing quantum states.  We are unable to tell the 
difference between the state vectors { |}𝐾 and { |�ℒ when a measurement is performed since the 
measurement provides the magnitude of the amplitudes.  However, applying the QFT to  

{ |}𝐾 = )
$

1
1
1
1

and { |�ℒ = )
$

1
𝑗
−1
−𝑗

results in two different state vectors. 

⟩|𝐾 = 𝑄𝐹𝑇{ |}𝐾 =

1
0
0
0

and ⟩|𝐿 =

0
0
0
1

.   The QFT is  therefore a critical operator in most quantum 
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Properties of the Quantum Fourier Transform



• The ordinary discrete Fourier transform (DFT) has a version called the fast Fourier transform (FFT).  It 
owes it fast determination to symmetry.  Since the DFT is an 𝑁×𝑁 matrix, it pays to study the elements  
of the matrix and see if there is symmetry in them. Below is a 6×6 matrix we will use for our discussion. 
The exponents are written modulo 6.  Notice that column 2 is similar to column 6 and row 2 is similar to
row 6.  This observation can be used to split the columns into even and odd columns.

𝑄𝐹𝑇<×< =

1 1 1 1 1 1
1 𝜔) 𝜔$ 𝜔- 𝜔. 𝜔B
1 𝜔$ 𝜔. 1 𝜔$ 𝜔.
1 𝜔- 1 𝜔- 1 𝜔-
1 𝜔. 𝜔$ 1 𝜔. 𝜔$
1 𝜔B 𝜔. 𝜔- 𝜔$ 𝜔)

• Straight-forward multiplication in determining the DFT of a function  would lead to 𝒪(𝑁$) steps.  By 
levering  symmetry, the FFT reduces the number of steps to 𝒪(𝑁𝑙𝑜𝑔$𝑁).

• The symmetry exploited is to divide the FFT into transforms of size ⁄𝑁 2 odd and even  terms  and to 
continue reducing the size by half again and again until one is performing each calculation exponentially  
faster.
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Symmetry and Superposition in the DFT
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• One can exploit the same symmetry in the 
calculation of the QFT. First, divide the 𝑄𝐹𝑇/
into  transforms of size 𝑄𝐹𝑇 ⁄/ $, then 𝑄𝐹𝑇 ⁄/ .
and so on until one is performing 𝑁 calculations 
of 𝑄𝐹𝑇), which are faster to do.  

• The process of sub-dividing the QFT into 
smaller chunks is illustrated in the graphic on the 
right.

• For the case considered, we have assumed that 
𝑁 = 2!.

• We also  note that 𝜔&; ⁄/ $ = −𝜔& and
𝜔&;/ = 𝜔&.

Symmetry in the Quantum Fourier Transform



• The QFT allows us to change the basis from the computational basis (often called the Z-basis),  which in 
our case has been ⟩|0 and  ⟩|1 ,  to the Fourier  basis or vice versa.  We  can represent the  QFT as below:

• ⟩|State in Computational Basis ,-./0-1 23-4564 74./89341.053/
⟶

⟩|Fourier Basis

• In ordinary signal processing, Fourier transformation is simply going from the time domain to the 
frequency domain, where we can determine the frequency content of a time domain signal. This is of 
critical importance because it means we can filter out unwanted frequencies (noise) from the signal we 
desire.

• The QFT plays the same role in computation in that it provides methods for enhancing amplitudes of 
desirable state vectors while minimizing those we do not want.
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Intuition Behind the Quantum Fourier Transform



• Suppose we want to calculate the quantum Fourier transform of 𝑓 𝑥 ; Say it is �𝑓(𝑖).  

• We can turn the calculation 𝑄𝐹𝑇/ into two applications of 𝑄𝐹𝑇 ⁄/ $.  Thus

�𝑓 𝑗 = 𝑄𝐹𝑇 ⁄/ $𝑓CDC! j + 𝜔"𝑄𝐹𝑇/
$
𝑓EFF(j)

• We can now turn the two calculations into four applications of the 𝑄𝐹𝑇//..

• Continuing the process, we can turn the 4 calculations into 8 applications of the 𝑄𝐹𝑇//H.  Eventually, we 
can turn the 𝑄𝐹𝑇/ calculations into 𝑁 applications of the 𝑄𝐹𝑇).

• This process greatly simplifies and speeds up the calculation  of the  quantum Fourier transform.
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Speeding up the QFT Calculations 



• Introduced primitive roots of unity
– Showed relationship to DFT
– Established  relationship of DFT to QFT

• Discussed gate  model of QFT
– Example of computing the  QFT
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Summary


